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Abstract-A perturbation analysis of mixed convection flow over a vertical semi-infinite surface with 
uniform heat flux is presented. A matched asymptotic expansion technique is used to construct inner and 
outer expansions including, for the first time, both mixed convection and higher-order boundary layer 
effects. It is shown that these effects must be simultaneously included to obtain consistent higher-order 
approximations to mixed convection boundary layer flow at large downstream distances. Numerical 
calculations are presented for Pr = 0.733 and 6.7 which indicate the relative magnitudes of mixed convection 
and non-boundary layer effects. In addition, new experimental measurements of surface heat transfer rates 
and velocity and temperature profiles are presented for mixed convection flow adjacent to a vertical uniform- 
heat-flux surface in air. The measured profiles are found to be in excellent agreement with those predicted by 
the analysis. The predicted variation of the Nusselt number is also seen to agree well with the values inferred 

from the measurements. 

~OMENC~A~RE 0, velocity in the y direction ; 

specific heat ; & coordinate parallel to the surface; 

terms in the expansion for the stream x* = (kv2/gpq)1’4/5; 

function (i = 1, 2, . ..). Y, coordinate normal to the surface. 

gravitational acceleration ; 
= 5(Gr;/5)‘!5 ; Greek symbols 

= sBx3(to - I,,)/v2; P9 coefficient of thermal expansion ; 

= gfiqx4/kv2 ; 6 = 5x/G*; 

= (t - t,,)/AT; AT, = qS/k; 

terms in the expansion for H (i = 1,2,. . .); El_i> = 5/G*; 

local surface heat transfer coefficient ; EM, = I?/(G*/S)3’4 ; 

fluid thermal conducti~ty; 43 = y/6; 

= h&k; 8, = tan-‘(y/x); 

pressure ; lb absolute viscosity; 

total pressure (static + dynamic) far from V, kinematic viscosity ; 

the surface; P3 local fluid density; 

terms in the inner expansion for p - p, P u density of the ambient fluid ; 

(i=l ); , 2, .*. b surface shear stress ; 

terms in the outer expansion for p - p, 3;,5 terms in the outer expansion for Y 

(i = 1, 2, . ..). (i = 1, 2, . ..). 

Prandtl number; y, stream function. 

surface heat flux ; 
radial distance measured from the leading 
edge ; 1. INTRODUCTION 

= u~(Skv2/g~q)1~4/v; IN TECHNOL~Y and the en~ronment, external boun- 
= u,xIv; dary layer flows often occur in which both buoyancy 
temperature ; and motion of the ambient fluid have strong effects on 
surface temperature ; the resulting convective transport. Such mixed con- 
ambient temperature; vection flows have been the subject of numerous 
velocity in the x direction ; studies. Most previous studies of laminar mixed 
free stream velocity ; convection flows past vertical flat surfaces have con- 
= vG*‘/5x; sidered either an isothermal or a uniform-heat-flux 
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surface in a uniform external stream. Since similarity 
solutions cannot be obtained for these Bow circum- 
stances, analysis of these flows requires more powerful 
techniques, such as finite difference numerical schemes, 
local similarity analysis or perturbation methods. 

Merkin [I] points out that for the two effects in the 
same direction, the flow near the leading edge of an 
isothermal surface is mostly forced convection flow, 
since thermal transport is not yet established. The 
buoyancy effect grows downstream, until at large 
downstream distances, the flow behavior approaches 
that of pure free convection flow. For opposed effects, 
the flow near the leading edge is again mostly forced 
convection. However, the increasing effect of the 
opposed buoyancy force with downstream distance 
eventually decelerates and reverses the flow near the 
surface. This amounts to a flow separa!ion. Thus 
opposed effects result in the possibility of flow separ- 
ation. Similar considerations apply to mixed con- 
vection flow adjacent to a uniform-heat-flux surface. 
Earlier studies of mixed convection flow near an 
isothermal surface by Eshghy [2] and Szewczyk [3] 
did not address these physical considerations. In 
addition, Merkin [I] points out that, for the isother- 
mal surface condition, expansions at large down- 
stream distances should contain logarithmic terms. 
These were not included in the solutions of Eshghy [2] 
or Szewczyk [3]. 

Most past studies of mixed convection flow over 
vertical surfaces have considered the flow at small to 
moderate distances from the leading edge, where the 
buoyancy force effects are of the same order or smaller 
than forced-flow effects; that is, GrJRez < 0( 1). These 
include the studies of Sparrow and Gregg [4], Kliegel 
[S], Lloyd and Sparrow 161, Oosthuizen and Hart 
[7], Wilks [S], Gryzagoridis [9], Hommel [lo], and 
Afzal and Banthiya [ll]. In a few of these in- 
vestigations, such as Oosthuizen and Hart [7] and 
Afial and Banthiya [l 13, results are presented at fairly 
large downstream distances. However, the most thor- 
ough analyses of the asymptotic behavior of mixed 
convection flow over a vertical surface at large down- 
stream distances, arc those of Merkin [l] for the 
isothermal surface and Wilks [12] for the uniform- 
heat-flux surface. For aiding etfects, Merkin [l] ob- 
tained expansions for the solution near the leading 
edge and far downstream. The gap between these 
solutions was bridged with a numerical marching 
scheme. Forced convection flow with opposed thermal 
buoyancy was also analyzed up to the point of 
separation. For both circumstances, computed results 
were presented for Pr = 1. For aiding flow, the 
expansions at large downstream distances include the 
logarithmic terms omitted by Szewczyk [3] and 
Eshghy [2]. 

Similarly, Wilks [12] obtained expansions for the 
solution near the leading edge and far downstream for 
mixed convection along a vertical uniform-heat-flux 
surface in a uniform free stream. The solution at 
intermediate distances was determined using a 

numerical marching technique. Wilks [12] showed 
that for the uniform-~ux surface, no logarithmic terms 
arise. 

Despite these studies, there are aspects of mixed 
convection flow along vertical surfaces at large down- 
stream distances which warrant further investi- 
gation. The expansions obtained by Merkin [1] and 
Wilks [12] contain terms up to second order in the 
perturbation parameter. This is mathematically ap- 
propriate when the boundary layer equations are 
assumed to be the valid governing equations of 
motion. However, from a physical standpoint, the 
contributions of the second order terms, relating to 
mixed convection, may be small compared with the 
contributions of terms in the Navier-Stokes equations 
which were discarded when making the boundary 
layer approximations. Hence, including 2nd-order 
terms may be physically inconsistent. It is necessary to 
simultaneously assess both the effects of non-zero free 
stream velocity and of higher-order corrections to 
boundary layer analysis. 

There is also another di~culty with the analysis of 
Wilks 11121. There is an error in the 1st order cor- 
rection equation for the expansions at large down- 
stream distances. Apparently, the computed results 
for large downstream distances were based on this 
erroneous equation. 

Although considerable time has elapsed since the 
studies of Merkin [l] and Wilks [12], the asymptotic 
behavior of mixed convection flows at large down- 
stream distances has not been explored experimen- 
tally. In fact, there is very little experimental data 
concerning the behavior of mixed convection flow over 
vertical surfaces even at small downstream distances. 
The very early heat transfer measurements of Kliegel 
[S] apply to forced flow perturbed with thermal 
buoyancy. In a later study, Gryzagoridis [9] measured 
surface heat transfer rates and velocity and tempera- 
ture profiles in mixed convection flow adjacent to a 
vertical isothermal surface in a uniform free stream. 
The measurements were largely in flows in which the 
buoyancy effects are the same order as, or smaller than, 
forced convection effects. The measured surface heat 
transfer rates and temperature profiles agreed well 
with the analytical studies of Lloyd and Sparrow [6] 
and Oosthuizen and Hart [7]. However, the measured 
velocity profiles were found to be in poor agreement 
with these calculations. No other data has been found 
in the literature for mixed convection flow over vertical 
surfaces. 

The present study resolves the matter of consistent 
higher-order approximations of the downstream be- 
havior of mixed convection flow adjacent to a vertical 
uniform-heat-flux surface in a uniform free stream. 
Transport behavior far downstream is of considerable 
interest, since it is the foundation for studies of the 
stability and transition of such flows. Here the method 
of matched asymptotic expansions is used to construct 
solutions valid far downstream (an and eM small). The 
non-zero free stream velocity and higher-order boun- 
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dary layer effects are considered simultaneously as 
perturbations of the associated pure free convection 

flow. It will be seen that a boundary layer correction 
term will enter the expansions before the 2nd-order 
correction term for mixed convection reported by 
Wilks [12]. Computed results are presented for 
Prandtl numbers, Pr, of 0.733 and 6.7. 

These results are then compared with new experi- 
mental measurements of surface heat transfer rates and 

velocity and temperature profiles in such a mixed 
convection flow. The experimental results will be seen 
to agree extremely well with those predicted by the 
analysis. 

2. ANALYSIS 

The formulation relates to a semi-infinite vertical 
surface with the origin at the leading edge. The x axis is 
vertically upward and the y axis is normal to the 
surface. Heat is dissipated uniformly, at the surface, to 

the fluid. Employing the Boussinesq approximations 

and neglecting the viscous dissipation and pressure 
terms in the energy equation, the 2-dim. governing 
equations for steady flow are: 

au au 
z+-=o, 

ay 
au au 

u-t-v-= 
ax ay 

V($$) 

+ gB(t - t, ) - f g, (2) 

u-+u-= ;; v($+$)-b$, (3) 

u;+“:_$[!$+$j, (4) 

Here, u and u are velocity components in the x and y 
directions respectively, v is the kinematic viscosity, p is 
the fluid density, t is temperature, p is pressure, g is the 
gravitational acceleration, /3 is the coefficient of ther- 
mal expansion, and Pr is the Prandtl number. The 
corresponding boundary conditions are: 

at 
u-0=0,-=Q aty=O,x>O, 

ay 
(5) 

au at 
-=V=O, -=0 aty=O,x<O, 
ay ay 

(6) 

u - u,, t - t,, P - P, - f PU, 

as y -+ 7~ and upstream. (7) 

Here q and k are the surface heat flux and thermal 
conductivity respectively. The non-boundary layer 
and mixed convection effects may decay differently, in 
the asymptotic sense with increasing downstream 
distance. Using the method of matched asymptotic 

expansions, two different perturbation parameters 

may be expected to arise: one characterizing higher- 
order corrections to boundary layer theory, ch, and the 
other characterizing mixed convection effects, cM. 
Defining a streamfunction Y so that u = Y’, and u = 
- Y’,, the inner and outer expansions are taken as : 

inner 

Y = U@Fo(V) + &J,(V) + &FZ(V) 

+ &F&) + a,s,F’,(rl) + . . .I> (8) 

f - t, = AW,(rl) + MI(v) + Mh) 

+ GfHh) + W”H40?) + ‘. .I? (9) 

p - p, = - $u:. + pu2[&$“P,(~) + . ..I. (10) 

outer 

Y=&J+12;*+iJ2+..., (11) 

t-tt,=To+T’,+T1+..., (12) 

P-pP,=-;put+P,+P2+..., (13) 

where 

U = vG*~ISX, 6 = 5x/G*, AT = 46/k. (14) 

4 = y/6, G* =5(Gr:/5)1’5, Gr: = (g/3qx4/kv2). (15) 

The form of the inner expansion (10) for p - p,, is 
chosen so that it can be matched in a consistent 
manner with the pressure field in the outer inviscid 
flow. Based on the results of Mahajan and Gebhart 
[13] and Wilks [12], who studied these effects sep- 

arately, aH and a,,, are defined as 

where 

eH = S/G*, .sM = 8/(G*/5)3'4, (164 

R = 5 (5kv2/gfiq)1/4 = Re,l(Gr:/5)1’4. (16b) 
V 

Hence, 

For the ranges of u, and q considered here, i? is an O(1) 

constant, which implies that Re, = O([Gr:/5]“4). 
Substituting (17) into (8) through (lo), the inner 
expansions become : 

inner 

Y = U@F,(rl) + f7&;‘4 F,(v) + &F,(V) 

+ R2$‘2 F&I) + l?~,?,‘~ F,(y) + . .], (18) 

t - L = AT[H&) + RE~!,,‘~H~(~I) + cuds 

+ a2ap N3(q) + Rqy4 H4(q) + .], (19) 

p - p, = - +i + pU2[R&$‘4 P,(q) + . ..I. (20) 



In the inner region, from (18) it is seen that 

u = U[F’, + REP F; + EnF; 

-i_ RZp3:2 F’ .+ Rr7j4 F’ + ‘H 3 “R 4 . ..J. (21) 

Xn the usud manner For matched asymptotic cxpan- 
sions, the expmsions in (IS)_ (19) and (20) are sub- 
stituted into the governing equatians. perturbation 
equations arc then obtained by collecting terms with 
like powers of cu. Successive matching in the manner 
described by Van Dyke [f4] yields the boundary 
conditions for each levei of the expansions in the inner 
and outer regions. The rnat~h~~~ ~onsjderatio~s here 
are virtually the same as those of Mahajan and 
Gebhart [13] and therefore will not be discussed in 
detail. After matching, it is found that the terms of the 

In the outer inviscid region, Ii/e is simply the 
contribution due to the uniform free stream, It/e -- UJ’ 

= u, r sin N. From matching, the higher-order terms 

where X = (1/5)(kv2/g&)“*, F,(.c) = (4/5)(&q cot 
n/5 + A,), and A, = F&z),). Solving these equatians 
using Bernoulli’s equation to obtain terms in the 
e~~n~o~ for pressure, yields, for the outer region : 

sin i fx - 8), (32) 

(33a) 

(3%) 

For the inner expansions, eigenfunctions also exist 
which identically satisfy the boundary conditions at 
zero and Miuity, A ~ornbin~t~~~ of these may be added 
to the solution which win stlf sati* dl the ~~~~0~s 
imposed. The ~jgenfun~t~on terms associated with 
expansions (18) and (19) are d the forms C~~~.~~(~~ and 
C,E;;” (p&r), respectively. C,, is a multiplicative constant 
associated with the stream function upstream, and 1, is 
the corresponding eigenvalue. The lowest order eigen- 
funedons associated with the inner expansions are : 

with the corresponding eigenvalue, I,, equal to 5/4. 
These are identical to the lowest order ~~genf~n~t~~~~ 
found by ~~~a~~ and Genhart [ t 31 for the pure free 
~nv~t~~~ case. Other e~~enva~~~s found for the inner 
expansion have values greater than 2 and hence wilf 
not appear in expansions (18) and (19) to O(e$‘). 

Eigenfunctions of the type described above must he 
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considered when obtaining a series solution valid far 
downstream in a boundary layer flow. In several such 
flows, Stewartson [15] has found that an inconsistency 
arises in the large q behavior of the solution, when a 
term in the postulated series is the same order as one of 
the eigenfunctions. Stewartson [15] also showed that 
the inconsistency could be resolved by inserting a log 
or loglog term into the series. As discussed in the 
previous section, Merkin [l] obtained a series sol- 
ution, valid far downstream, for mixed convection 
flow adjacent to a vertical isothermal surface. For that 
flow circumstance, Merkin [l] encountered a situation 
similar to that described by Stewartson [15]. The 
lowest order eigenfunction was found to be the same 
order as one of the terms in the expansions, resulting in 
an inconsistency in the large q behavior at that level. 
Merkin [l] resolved the inconsistency by inserting 
logarithmic terms in the expansions for the tempera- 
ture and stream functions. 

For the uniform-heat-flux surface condition, the 
lowest-order eigenvalue (n, = 5/4) is not equal to the 
exponent of E” in any of the terms in expansions (18) 
and (19). No inconsistencies exist in the large q 
behavior of F,(q) and Hi(q) for i = O-4. Hence, for 
expansions (18) and (19X to O(E$~), inclusion of a log 
term is not appropriate. In Merkin’s [l] expansions for 
the corresponding problem with an isothermal surface, 
the appearance of log terms at an early stage is 
apparently a consequence of the way in which the 
surface temperature and the perturbation parameter 
vary with x. 

From a global energy balance it may easily be 
shown that the contribution of the lowest order 
eigenfunctions to the expansions (18) and (19) must be 
identically zero. Details of the procedure may be found 
in Mahajan and Gebhart [13]. It is thus concluded 
that inner expansions (18) through (20) are approp- 
riate up to O(E~~). 

The inner region equations (22)-(26) were solved for 
Pr = 0.733 and Pr = 6.7 using a predictor<orrector 
shooting method. Values of F;(O) and Hi(O), i = l-4, 
were guessed and subsequently corrected to satisfy the 
far boundary conditions. A fixed step size of A? = 0.05 
was used while integrating from q = 0 to q = qedge. For 
Pr = 0.733, r/+ = 20 was used, while for Pr = 6.7, 
qcdge was taken to be 35. The resulting values of F:(O) 
and H,(O) and other numerical data of interest are 
summarized in Table 1 for Pr = 0.733 and Pr = 6.7. 
The velocity and temperature profiles associated with 

the above solutions are shown in Figs. l-4. From (26c) 
and (26e) it is seen that 

P, = constant = 2 A, cot t. (36) 

The local temperature difference, Nusselt number, 
and surface shear stress are: 

(39) 

where h, is the local heat transfer coefficient and T,,, is 
the surface shear stress. 

Substituting for the different Prandtl numbers 
yields : 

for Pr = 0.733: 

t,--t, 
@ = k H,,(O) (1 - 0.06439&$‘4 - 0.24423~” 

-0.00430R2~~2 + 0.40261&~;3’~ + . .), (40a) 

1 
Nu, = ___ (1 + 0.06439&;‘4 + 0.24423~~ 

@&Y 

+ 0.0084482~3’2 - 0.371168~“” H ,H + . ..I, (40b) 

?v = pv; F;(O) (1 - 0.027458~~ - 0.103348, 

+ 0.01461~2~~2 + 0.18386&,7,@ + .); (4Oc) 

Table 1. Computed constants for mixed convection flow adjacent to a vertical uniform-heat-flux surface 

i 
FI’(0) H,(O) 4 

Pr = 0.733 Pr = 6.7 Pr = 0.733 Pr = 6.7 Pr = 0.733 Pr 6.7 = 

0 0.808931 0.356332 1.479807 0.841701 0.507506 0.205833 
1 - 0.022209 0.006178 - 0.095286 - 0.054026 - 0.45744 - 0.55057 
2 -0.083596 0.006691 -0.361412 - 0.08258 - 1.10914 -0.53744 
3 0.011820 0.005962 - 0.0063594 - 0.03246 0.07002 0.27064 
4 0.148733 0.006178 0.595782 0.35555 
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FIG. 1. Velocity function distributions for Pr = 0.733. 

for Pr = 6.1: 

h-t, = ;H,(o)(l - 0.06419@/4 - 0.09811~ 

-0.03856R2~~2 + 0.42242&p + .), 

Nu, = 
1 

----(l+0.06419&~‘4 + 0.09811~~ 
#,(O) 

+ 0.04268~2c~‘2 - 0.40982R~z~ + ,), (4lb) 

(414 

7w = pv ; F’;(O) (1 + 0.017348&;*4 + 0.01878~~ 

+ 0.01673~2~;‘2 + 0.01734I?~,?/~ + . ..). (41~) 

It is interesting to note that the first correction due 
to mixed convection effects and the first correction due 
to non-boundary layer effects both affect t, - t,, Nu, 
and 7, in the same manner. 

In the inner expansions, (18)-(21), and in the terms 

of the outer expansions, (31)-(33), note that a appears 
as a factor in terms which result from mixed con- 

0.8 

0.6 
\ 

HO 

FIG. 2. Temperature function distributions for Pr = 0.733. FIG. 4. Temperature function distributions for Pr = 6.7. 

FIG. 3. Velocity function distributions for Pr = 6.7. 
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vection effects. Terms in which R does not appear, are 
due to higher-order boundary layer effects alone. In 
the inner expansions, (18)-(21), and in (37)-(41), the 
terms of O(RF~:~) and 0(R2c,!,~‘) are purely a con- 
sequence of mixed convection effects. These terms are 
equivalent to the lst- and 2nd-order corrections 
reported by Wilks [12]. The term of 0(&n) is due to 
higher-order boundary-layer effects alone. This term is 
the lst-order correction reported by Mahajan and 
Gebhart [13]. The term of O(RE,?‘~) is a cross term 
representing interaction ofmixed-convection and non- 
boundary layer effects. As l? -+ 0, the inner and outer 
expansions reduce to the expansions obtained by 
Mahajan and Gebhart [ 131 for higher-order effects in 
pure natural convection flow. 

Using the method of matched asymptotic expan- 
sions, consistent higher-order approximations for the 
flow and transport in the inner region are obtained 
here to O(E$~). In addition, the outer solutions indicate 
the higher-order changes in the outer inviscid flow 
which result from modification of the flow in the inner 
region by mixed-convection effects. 

formed by stretching a 15 cm wide piece of 0.0127 mm 
thick Inconel 600 foil in a special support fixture. The 
jaws at the top of the fixture were spring loaded so that 
they exerted an upward force on the foil. The foil was 
looped around an aluminum support covered 
with plastic tape. This support resisted the up- 
ward pull of the jaws and thereby pulled the foil tight. 
A 064cm thick piece of foam insulation was 
inserted between the two sections of foil, so that at 
steady state, all heat dissipated by the foil was 
transferred outward to the surrounding air. The 
resulting assembly formed a plate 15 cm wide, 40 cm 
long and 0.64 cm thick, with a front and back surface of 
the Inconel foil and an interior of foam insulation. The 
lower aluminum support provided a smooth leading 
edge configuration. Passing electric current through 
the foil provided a uniform-heat-flux surface 
condition. 

In contrast, the coordinate expansion technique 
used by both Merkin [1] and Wilks [12] does not 
include higher-order boundary layer effects of com- 
parable magnitude. It also provides no information 
regarding the outer inviscid flow behavior. Thus, the 
method of matched asymptotic expansions is here 
more physically consistent, and it provides more 
information about the flow than simple coordinate 
expansion techniques. Upon converting results of the 
present analysis for Pr = 1 to the formulation of Wilks 
[12], it was found that the error in [12] had only a 
small effect on the resulting solutions. 

3. EXPERIMENTS IN AIR 

To assess the accuracy of the analysis presented in 
the previous section, experimental measurements were 
made in the mixed convection flow adjacent to a 
vertical uniform-heat-flux surface in air. The experi- 
mental system is shown in Fig. 5. The experiments were 
conducted in a cylindrical test section 33.7 cm in inside 
diameter and 76.2 cm in height. The heated surface was 

Prior to the experiments, the surface was aligned 
vertically, with the leading edge horizontal, using a 
plumb line and level. Air flow was supplied to the test 
section by a line from a compressed air storage tank. 
The storage tank was maintained at about 7 atm 
pressure by a system which compressed and de- 
humidified the air. Air from the storage tank was sent 
through a pressure regulator, a critical orifice flow 
meter and then into the test section. The system had a 
peak flow capacity of about 0.7 m3/s at 1 atm pressure. 
This amounted to a peak mean velocity of 7.5 cm/s in 
the test section. By maintaining critical flow conditions 
at the orifice in the orifice meter, the flow through the 
test section was a function only of the pressure 
upstream of the meter. The pressure there was held 
within _t 0.07 atm ( + 7 kPa) by the pressure regulator. 
The flow through the test section was thereby held 
constant within f0.05 cm/s. Measurements indicated 
that the temperature of the air supplied to the test 
section did not vary by more than SO.05”C during a 
test. These tolerances could be held for as long as 
45 min, despite cycling of the compressor to maintain 
the supply in the storage tank. The air flow rate was 
measured with the critical orifice meter as a rough 
check of the hot wire measurements of the mean flow in 
the test section. 

TEST SECTION yVALVE I PRESSURE 

6.35 mm THICK 
FOAM INSULATION 

TAPE - COVERED 

j ,“kk°FS~~UC~U~~ j 

FIG. 5. System used for mixed convection experiments. 
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Large-pressure-drop batIles were inserted at the top 
and bottom of the test section to ensure uniform flow 
distribution over the test section. Hot-wire measure- 
ments across the test section, made before inserting the 
surface, indicated that the flow was uniform to within 
+O.lOcm/s. During the experiments, the variation of 
the core velocity with vertical location was found to be 
negligible. The usual acceleration of the core flow 

which occurs in the entrance of a pipe was not 
appreciable because acceleration of the fluid by buoy- 
ancy, near the surface, compensates for the deceler- 
ation of fluid by shear in the boundary layer along the 
test section wall. The support structure for the surface 
was designed to minimize drag, and the structural 
members were far away from the heated surface. 

A regulated power supply was used to provide 
electrical power to the foil. During the experiment, the 
voltage was measured across the foil using a Hewlett 
Packard 3465B digital multimeter. The voltage was 
also measured across a Leeds and Northrup 0.01 ohm, 
lOOamp standard shunt in series with the foil, to 

determine the foil current. The foil current, and the 
voltage drop, were used to calculate the heat flux from 
the surface. 

Velocity measurements were made using a Disa 
55MOl constant-temperature hot wire anemometer 
with a Disa 55P14 miniature probe. The output from 
the anemometer was measured with a Hewlett Pack- 
ard 3455A digital voltmeter. The hot-wire probe was 
L-shaped so that the wire was upstream of the probe 
support. This minimized probe support interference. 
The probe was calibrated in air using the test-rig of 
Shaukatullah [ 161. This is a modification of the earlier 
apparatus of Dring and Gebhart [17]. The probe was 
calibrated at an overheat ratio of 1.6 for velocities up to 
40 cm/s. The method described by Mahajan [ 181 was 

used to correct the hot-wire output for the effect of 
varying ambient temperature. A discussion of this 
correction method may also be found in Carey [19]. 

The boundary layer temperature measurements 
were made using a 0.0254mm copper-constantan 
thermocouple. The two thermocouple leads were 
horizontal and parallel to the foil for about 0.8 cm on 
each side of the junction. In this arrangement, the wire 
lay essentially along an isotherm, reducing the con- 
duction loss in the leads. These leads then passed 

through a pair of 1.0 mm hollow glass tubes which were 
attached to a support outside the boundary region. 

This support also held the hot-wire probe and the 
surface probe. The latter, a 1.5 mm copper rod, was 
used to locate the surface. The zero setting of the 
surface probe was obtained by connecting it through a 
resistance meter to the foil. The circuit was completed 
when the probe contacted the foil, causing the re- 
sistance reading to drop from an infinite value to some 
finite value. The relative positions of the thermocouple 
junction and hot-wire sensor with respect to this 
surface probe were determined from an enlarged 
photograph of the assembly. The hot-wire sensor, 
thermocouple junction and surface probe were in the 

same horizontal plane. The ambient air temperature in 
the tank was measured using a 0.0127cm copper 
constantan thermocouple. An ice bath was used as a 

reference for both thermocouples. The output from the 
thermocouples was measured using a Hewlett Packard 
3465B multimeter as a voltmeter. 

The probe array was remotely traversed normal to 
the foil, in the boundary layer, using a Disa 55HOl 
traversing mechanism. This was driven by a Disa 
52COl stepper motor which was remotely controlled 
by a Disa 52BOl sweep drive unit. The output level 
corresponding to any given probe position was dis- 
played with high accuracy on the three digit mechani- 
cal counter of the sweep drive unit. The probe could be 
accurately moved in steps of 0.203 mm. The distance of 
the probe from the leading edge was measured ac- 
curately before putting the assembly in the tank. 

The thermocouple leads, the co-axial hot-wire cable 
and all the other electrical leads were taken out of the 
test section through sealed fittings in the side and top. 

After turning on the air supply and applying the foil 
current, the flow was allowed about 2min to reach 

steady state, for each test. Thermocouple and hot-wire 
readings were then taken at a number of points across 
the boundary layer. All measurements were taken at a 
single downstream location 31.4 cm above the lower 
edge of the surface. In each experiment, the convection 
heat flux was determined from the temperature 
measurements and power input to the foil. As de- 
scribed in Carey [ 191 the temperature measurements 
were used to correct for the weak effect of thermal 
radiation from the surface. 

Temperature and velocity measurements were taken 
at the combinations of heat flux, q and free stream 
velocity, u , , listed in Table 2. The corresponding 
values of chl, in and R for each of the combinations of 
u I and 4 are also listed. The values of 4 and u,, listed in 
Table 2 were chosen to cover the widest possible range 

of R within the limits of the experimental set-up. 
In Fig. 6, the measured velocity data is shown for 

each of the combinations of u -I and 4 in Table 2. Also 

shown, for each circumstance, are the calculated 
profiles from the analysis of the previous section. 
Excellent agreement is seen between the theoretical 
and experimental results. In Fig. 7, the measured 

temperature data is compared with the theoretical 
profiles for (+,,, Q,) = (0,O) and (0.75,0.028). Excellent 
agreement is again found between the calculations and 

the experimental data. In Fig. 8, the measured local 
overall temperature differences across the boundary 
region are shown, normalized with the value calcu- 
lated for chl = c,, = 0. Also shown is the calculated 
variation. The effect of E”, as seen in equation (40a) is 
much smaller than that of chl and is therefore neglected 
in Fig. 8. Note that for the uniform-flux surface 

(r, - r, )/(r, - 1, ),:MiO = (Nu,),:~ JNu,. 

The measured data in Fig. 8 is in very good agreement 
with the trend predicted by the analysis. 
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Table 2. The values of surface heat flux and free stream velocity at which velocity measurements were taken, 
the corresponding values of chl, q, and R, and the symbols used in Figs. 6 and 7 

%S 

0.10 

0.27 

0.45 

0.60 

0.75 

Et3 

O.Of6 

0.020 

0.022 

0.026 

0.028 

R 

23 

5.0 

8.0 

9.4 

11.1 

Symbol 

* 

A 

m 

FIG. 6, Measured and theoretical velocity profiles for mixed convection flow along a vertical uniform-heat- 
flux surface in a uniform air stream. The experimental conditions corresponding to each symbol are listed in 

Table 2. 

f.0 (a,, c,J= (0.75,0.028) 

Frc. 7. Measured and theoretical temperature profiles for 
mixed convection flow along a vertical uniform-heat-flux 
surface in a uniform air stream. The experimental conditions 

corresponding to each symbol are listed in Table 2, 

FIG. 8. Measured temperature differences (e) across the 
boundary layer for various E,,,. Also shown is the theoretical 

variation (--). 



4. CONCLUSIONS produce a fully downward flow. The present analysis 

It has been shown that the method of matched suggests that this will occur when Ed = R/G*3’4 = 

asymptotic expansions can be used to simultaneously 0( 1). Assuming a value of R of about 3, this implies G* 

analyze non-boundary layer effects and the behavior of = O(5). But G* = O(5) implies E+, = O(1). Hence, the 

mixed convection at large downstream distances. For present analysis implies that this inversion of the flow 

some conditions (small J? and large eH), the first will occur extremely close to the lower edge of the 

correction for higher-order boundary layer effects may plate, where boundary layer analysis is, in all events, 

be more important than the second correction for inappropriate. Since non-boundary layer behavior 

mixed convection effects. It is also seen that in- near the leading edge does not have a strong effect 

teraction of mixed convection and higher-order boun- farther up the plate, it is consistent to assume that this 

dary layer effects produces cross terms in the expan- inversion will also have only a weak effect there. 

sions. Note also that if i? -+ 0, the expansions reduce to Actually there is no reason, a priori, to expect thai this 

those found by Mahajan and Gebhart [ 131, for higher- orderly variation of the velocity profile will cause the 

order boundary layer effects alone. If additional terms flow to deviate from the behavior predicted by the 

were included in the expansions, the next term to present analysis for R < 0. 

appear in the inner expansions would correspond to These surmises are supported by the photographs of 

the Znd-order correction for higher-order effects re- the flow near a vertical ice surface melting in cold pure 

ported by Mahajan and Gebhart [13]. water which were presented by Carey and Gebhart 

Measured temperature and velocity profiles are in [20]. For an ambient water temperature, t , , of 4.7”C, 

excellent agrement with the predictions of the analysis. the upward wake above the ice surface reverses due to 

The measured erect of increasing Q,,, on the local the density extremum effects, and causes a downflow 

overall temperature difference, was also found to agree outside the upward flow near the ice surface. The flow 

with the results of the analysis. for t, = 4.7”C has exactly the characteristics of the 

Attention here has been focused mainly on assisting flow in Fig. 9(a). Bi-directional flow exists over most of 

mixed convection effects. However, physical circum- the surface, while near the lower edge, the flow is 

stances may arise in which strong buoyancy and weak virtually all downward (see Fig. 2(d) of Carey and 

free stream effects are opposed. Consider, for example, Gebhart [20]). The flow at higher locations on the 

the flow circumstance shown in Fig. 9(a). A downward surface apparently was not significantly affected by the 

free stream flow exists over a vertical plate consisting flow condition near the lower edge. 

of two sections. The lower portion is an impermeable The above considerations suggest that the analysis 

uniform-heat-flux surface, which generates an upward presented here may be applied to both aiding and, for 

buoyancy-driven flow along the surface. The upper some circumstances, opposed mixed convection. Since 

portion of the plate is porous, and suction there the expansions contain only integer powers of R, 

completely absorbs the rising fluid in the upward wake opposed effects, corresponding to R < 0, present no 

above the heated portion of the surface. mathematical difficulties. While the flow in Fig. 9(a) is 

Over most of the lower portion of the plate, strong somewhat idealized, its behavior is similar to a more 

buoyancy driven flow exists near the surface, with a common flow situation, shown in Fig. 9(b). In this 

weak outer downflow. From analysis, it is known that latter circumstances, fluid motion in the ambient, such 

the buoyancy effect diminishes toward the lower edge as the wind, strikes the top corner of a heated vertical 

of the plate. At some point near the lower edge, the surface at an oblique angle. The wake is thereby 

buoyancy may be sufficiently small that the downward deflected away to the left and an essentially vertical 

outside flow will dominate, and, through shear stress, downward flow intereacts with an upward buoyancy 
driven flow near the surface. The present analysis may 
be a good approximate model for the transport along 
the heated surface in such circumstances. However, the , expansions to 0(&!,i4) are not fully consistent for such 
opposed flows since they do not include higher-order 
effects associated with the top edge configuration. To 
obtain fully consistant higher-order approximations 
would require an analysis adapted to a specific trailing 
edge configuration. 

(b) 

FIG. 9. Possible flow configurations resulting in opposed 
mixed convection flow. 
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TRANSPORT A GRANDE DISTANCE EN AVAL DANS UNE CONVECTION MIXTE 
ADJACENTE A UNE SURFACE VERTICALE A FLUX THERMIQUE UNIFORME 

R&mm-On presente une analyse de perturbation de la convection mixte sur une surface verticale semi- 
infinie avec un flux thermique uniforme. Une technique de d~velop~m~t asymptotique est utilis&e pour 
construire des developpements inteme et externe incluant, pour la premiere fois, a la Fois la convection mixte 
et ies effets de couche limite d’ordre ileve. On montre que ces effets peuvent &re tous inclus pour obtenir des 
approximations d’ordre Clevd pour I’ecoulement de couche limite et de convection mixte a de grandes 
distances en aval. On prisente des calculs numeriques, pour Pr = 0,733 et 6, 7, qui indiquent les grandeurs 
relatives des effets de convection mixte et de non couche limite. De plus, de nouvelles mesures experimentales 
de flux thermique surfacique- de profils de vitesse et de temp&ature sont present&s pour la convection mixte 
adjacente & une surface verticafe chat&e a flux uniforme dans l’air. Les profils mesurb sont en bon accord 
avec ceux prevus par le caleul. La variation calculee du nombre de Nussett est aussi conforme a celie deduite 

des mesures. 

TRANSPGRTVORGANGE IN DER AUSGEBILDETEN STRdMWNG BE1 GEMISCHTER 
KONVEKTION AN EINER SENKRECHTEN WAND MIT GL~~CHF~RMIGER 

W~RMESTRQM~~CHTE 

Zusammenfassung-Die gemischte Konvektion, die bei der Stromung fiber eine senkrechte halbunendliche 
Oberllkhe mit gleichformiger Warmestromdichte auftritt, wird mit Hilfe der Storungs-Analyse untersucht. 
Eine angepaBte asymptotische Entwicklungs-Methode wird zur Darstellung der inneren und tiul3ere.n 
Fdnktionen verwendet, wobei erstmals sowohl Mischkonvektion als such Grenzschicht-EtTekte boherer 
Ordnung berucksichtig werden. Es wird gezeigt, dab diese Effekte simultan beriicksichtigt werden mussen, 
urn konsistente Approximations hohere Ordnung fiir die gemischte Konvektion in der ausgebildeten 
Gr~z~h~chtstr~mung zu erhalten. Numerische Berechnungen we&en fur Pr i= 0,733 und 6,7 angegeben; 
diese zeigen die relativen Gr~~or~ungen der gemischten Konvektion und der N~cht-Gr~zschicht- 
Effekte. Darilber hinaus wird itber neue experimentelle Messungen des Wtirmeilbergangs und der 
Geschwindigkeits- und Temperaturprotile fur gemischte Konvektion in einer Luftstromung an einer 
senkrechten Wand mit gleichformiger Wiirmestromdichte berichtet. Die gemessenen Profile zeigen eine 
vorzilgliche Ubereinstimmung mit den vorausberechneten. Ebenso stimmt der vorausberechnete Verlaufder 

Nusselt-Zahl gut mit den Werten iiberein, die sich aus den Messungen ergeben. 
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~EPEHOC HA 6onbwx PAccTO~IH~~RX BHW~ no noToKY nPi4 TEW~HMM 
COCMElUAHHOfi KOHBEKUMEI? Y BEPTMKAJlbHOfi PABHOMEPHO HATPEBAEMOfi 

nOBEPXHOCTM 

AHnoTawuPMeTOnOM Bo-JMyweHsfi HccnenOBaHO Teqewie nps CMeuIaHHoii KOHBeKUklI1 y BepTkiKanb- 

HOi? OOny6eCKOHFiHOfi paBHOMepH0 HarpeBaCMOii nOBepXHOCT8. &IS nOCTpOeHHZ4 BHyTpHHHX R 

BHelllH~Xpa3~O;KeH~~Cy~CTOM(~TO6b~oBbI~OnHeHOB~epBbIe)B~~~H~~ KaK CMeL"aHHOfi KOHBeKl,AW, 

TaK~norpaHwHorocno~ Bnpw6n~~e~~~Bbw~1eronopi1nKa,~cnonb3yeTca cooTBeTcTBywn@ MeTOfl 

acHMnToTwecKor0 pa3noxewisT. nOKa3aH0, qT0 nonyqeHse cornacoBaHHblx npe6newtesati Bblcuero 

nopnnKa Ann norpascnoikeoro Teqetisix npti cMeuaHHoii KoHBeKwiti Ha 6onbmsx paccTonHsax BHH~ 

n0 nOTOKy Tpe.6yeT OLhHOB~MeHHOrO yW?TZI 3TBX +$eKTOB. qNCneHHbIe paCYeTb1 npencTaBneHb1 ~JIR 

3Ha'ieHHti 'IHUla npaHnTn8, paBHblX &'=0,733 W 6.7 W OTpa~akOll&iX OTHOCATenbHbIk BKnafiCMelOaH- 

HOti KOHBeKUBl, A 3@@KTOB, He yWTbIBaeMbIX nOrpaHH',HblM CnOeM. KpoMe TOrO, npeL,CTaBneHbl 

HOBbIe~3ynbTaTbI3KCnepHMeHT~bHOrO&,3Me~HH~ H"TeHCHBHOCTW Oepe.HOCa Tenna Ha nOBepXHOCTrt, 

a TaKxe npO@_"etiCKOpOCTB ,I TeMOepclTypblDnU Te'IeHHIICOCMeUIaHHOfi KOHBeKU&,efi y BepTHKanbHOti 

paBHoMepH0 HarpeeaeMoB noBepxHocTa B Bosnyxe. M3MepeHfible npo+ine xopouo cornacywTca 

c paC',eTHbIMH. nOKa3aHO TaKme xopomee coBnaneHHe paCCWTaHHbtX Ii H3MepCHHblX 3HaseHaB wcna 

HyccenbTa. 


